
Theoret. Chim. Acta (Berl.) 63,447-472 (1983) 
THEORETICA CHIMICA ACTA 

�9 Springer-Verlag 1983 

Review 

Double Cosets in Chemistry and Physics 

Ernst Ruch 

Institut fiir Quantenchemie, Freie Universit~it, Berlin, Federal Republic of Germany 

Douglas J. Klein 

Department of Marine Sciences, Texas A&M University at Galveston, Galveston, Texas, U.S.A. 

1. Introduction 

A variety of seemingly rather different ideas that are pursued while classifying 
objects of physics and of chemistry can be analyzed on the basis of a uniform 
algebraic scheme, and connected problems like the one of counting and others 
can easily be solved when use is made of a concept that refers to the decomposition 
of groups into subsets, known as double cosets. Beyond this, studies on the 
classification of molecules and of chemical reactions indicate that an even broader  
mathematical classification idea covers exactly the natural scope of requirements, 
playing the r61e of an algebraic counterpart  of nature. This concept concerns 
the classification of bijections under the aspect of symmetry equivalence, sym- 
metry being understood as a property that is related to both the range and the 
domain and is built from the respective symmetries with varying degrees of 
mutual correlation. With reference to the type of classes defined correspondingly, 
double cosets appear as classes for situations where no correlation is observed. 
Since, besides a formalistic profit, also the conceptual profit in having available 
the more general scheme is considerable, a review on the application of double 
cosets should be pursued under the encompassing aspect of bijection classes. 

Aiming primarily at an understanding of the classification philosophy encoun- 
tered in the various problems and, in order to provide the prerequisites for 
further investigations in the field of applications, we shall give an extensive 
presentation of this new concept. The present paper also contains a historical 
introduction exhibiting the increasing significance of double cosets for applica- 
tions and it accounts for essentially all the applications known in chemistry. As 
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to physics, some intuitive examples will demonstrate the basic r61e of double 
cosets for a diversity of problems akin in nature. However, we shall omit the 
relevant consequences concerning representation theory as used in physics for 
the evaluation of quantum mechanical matrix elements, since a concerned dis- 
cussion would entail a dramatic increase in size of the present article and 
would contain primarily technical information on how to handle very complicated 
formalisms occurring with problems that are of interest largely to a group of 
specialists. 

Double cosets were introduced as a generalization of cosets, and a number of 
their properties (along with formulas for their enumeration and orders) were 
established in a paper by G. F. Frobenius [1] in 1887. J. S. Frame [2], [3], [4], 
in the fourties, started and extensively developed the theory of DC algebras and 
DC matrices ~. He also utilized double cosets for the construction of irreducible 
representations and for the discussion of various related problems in later 
publications [5], [6], [7]. I. Schur [8] in 1933 and, later on, H. Wielandt [9], 
[10], [11] studied DC- and related algebras in view of permutation groups. For 
connections with representation theory compare C. W. Curtis and T. V. Fossum 
[12]. In a systematic treatment of induced representations by G. W. Mackey 
[13] double cosets play a decisive r61e. His rather programmatic theory was 
implemented later by A. J. Coleman [14] in a paper on the symmetric group, 
by S. L. Altmann [15] in view of point groups, and by A. Kerber [16] who 
treated wreath products. Indeed, some ideas in Mackey's theory can be traced 
back to a method introduced ad hoc by E. Wigner [17] in 1939 when constructing 
the irreducible representations of the Lorentz group. In summation, double 
cosets like conjugacy classes represent a mathematically significant structure of 
groups. The step to a less specific but still relevant classification concept which 
encompasses, as particular cases, the classification into double cosets as well as 
into conjugacy classes was made very recently by W. H~isselbarth, T. H. Seligman 
and the authors [18], [19]. Without reference to particular properties, subsets 
of groups according to this concept were termed bilateral classes. With regard 
to the classification of bijections they reflect an interpretation of symmetry 
equivalence of most satisfying generality. In particular, because of this interpreta- 
tion bilateral classes promise significant applications outside the field of pure 
mathematics. 

Like Wigner's fundamental paper, mentioned above, there are a number of 
publications in physics and in chemistry where double cosets appear in particular 
form and context, but are not recognized as such. R. McWeeny and F. Yonezawa 
[20] in their study of pairs of interacting atoms found different types of interaction 
phenomena uniquely related to certain sets of cosets in the symmetric group. 
Actually, their classes are double cosets; recognition of this fact allows the 
formulation of a corresponding classification for multiple sets of interacting 
atoms. The way of generating the symmetric group $6 as demonstrated by 
T. Yamanouchi [21] exemplified a rationale for generating groups by what are, 

i We abbreviate "double coset" to DC in composite expressions like DC algebra. 



Double Cosets in Chemistry and Physics 449 

in fact, double cosets. Within the context of nuclear structure calculations A. 
Hassit [22] found that H. A. Jahn's [23] (single-) coset analysis of fractional 
parentage coefficients did not account for all the simplifications possible. 
Thereafter H. A. Jahn [24] extended Hassit's observation and developed what 
may be regarded as theorems on special double cosets and DC coefficients of 
the symmetric group. Double cosets of the symmetric group occur explicitly in 
the papers of H. Horie [25], F. Sasaki [26], and A. J. Coleman [27], but are 
presented as a rather special tool for decomposing the antisymmetrizer (or Boson 
symmetrizer). The success of an explicit use of double cosets is beautifully 
illustrated in C. Herring's contribution [28], [29] on the Heisenberg spin Hamil- 
tonian where exchange processes are characterized correspondingly, though this 
aspect of this theory was not appreciated for some time. 

A new period of research concerning the r61e of double cosets in physics and 
chemistry began in 1969 when two main aspects emerged, the one referring to 
a refined use of symmetry as a simplifying means in calculations, the other to 
double cosets as a mathematical tool suitable for a conceptual analysis of 
classifying structures, in particular structures of interest to the chemist, and for 
their formal manipulation. The first topic, the evaluation of quantum mechanical 
matrix elements (with some of the developments in papers by P. Kramer and 
T. H. Seligman [30], [31], [32], by C. A. Carlisle, F. A. Matsen, and one of the 
authors (D.J.K.) [33], by J. J. Sullivan [34], by E. R. Davidson [35], by W. F. 
Siems and R. D. Poshusta [36], and by R. W. J. Roll  [37] shall not be treated 
here. Rather, the classification of isomers, configurations, and isomerization 
processes as first pointed out by W. H~isselbarth, B. Richter, and one of the 
authors (E.R.) [38], [39] is to be the focus of our review. 

2. Double Cosets 

a) Elementary Properties 

Double cosets partition groups in a way characterized by a pair of subgroups. 
With A and B denoting subgroups of G the partitioning may be indicated as 
an AVB-double coset decomposition, where each particular subset of this type 
may be identified by one of its elements, say g, according to the definition 

AgB =-{agbla cA, b ~ B}, g~ G. (2.1) 

These subsets establish equivalence classes since membership of two group 
elements in the same A\/B-double coset is expressed through an equivalence 
relation 

g'-g"e~3a cA, b ~B: g'= ag"b. (2.2) 

With reference to a given choice of representative elements g~, i = 1, 2 . . . .  and 
with CJ denoting the disjoint union, the decomposition of G into double cosets 
reads as 

G = ~ AgiB. (2.3) 
i 
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In contrast to cosets, double cosets associated with a given pair of subgroups A, 
B, as a rule, do not have the same order or cardinality. Left and right cosets 
result from specialization of AVB-doub le  cosets if either A or B are chosen to 
be the unit subgroup of G. An A\ /B-double  coset is at the same time a union 
of right cosets of A and a union of left cosets of B ;  in fact, it is the smallest set 
containing a given element g, and decomposing into A-r ight  as well as into 
B- left cosets. 

Since A-r ight  and B-lef t  cosets partition A\ /B-double  cosets, the corresponding 
coset intersections Ag'  ~g"B  do so as well. Provided the elements g' and g" 
belong to the same double coset AgB we may write g' = a 'gb ', g" = a"gb" and find 

Ag'  n g"B = a"(Ag n gB)b' 

= a"(A n gBg-1)gb ' = a"g(g- lAg c~ B)b'. (2.4) 

Therefore,  AVB-doub le  cosets decompose into subsets that arise from left and 
right multiplication of Ag n gB with the representative elements of the (A c~ 
gBg- 1)_ left coset decomposition of A and the (g- lAg c~ B )-right coset decompo- 
sition of B, respectively, 

AgB = (jas (Ag n gB )b,, (2.5) 
St 

where 

A =~.Jas(A ~ gBg -l) 
s 

B = ( j ( g - l A g  n B)bt. 
t 

The constituent subsets of AgB as in Eq (2.5) have equal cardinality, and the 
intersection groups involved are isomorphic 

d (g) = lAg c~ gB[ = la,(Ag n gB )bt] = [A n gBg-l[ = [g-lAg n B I  
(2.6) 

A c~ gBg-l  ~- g - l A g  c~ B. 

The intersection sets a,(Agc~gB)bt consist of all those elements of the right 
coset Agbt that can also be written as an element of the left coset asgB. Therefore,  
d(g) represents the number of times each element of AgB is produced if any 
a c A ,  b e B  is used to form a product agb. Hence, d(g) will be called the 
repetition frequency and a formula for the cardinality of double cosets follows 
immediately: 

IAIIBI (2.7) 
IAgB[ = lAg ~gBl" 

In case of finite groups, a formula for the number of AVB-doub le  cosets is 
derived from Eq (2.7) by summing the reciprocal double coset orders assigned 
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to each element of G, and by rewriting this sum in terms of Kronecker 6-functions 

IA ~ gBg-ll 1 
= A B E  Z E 8a,gbg-'. 

As the order of a conjugacy class Cr equals the centralizer index of the elements 
contained in this class we annotate 

I[GI/IC,. I, if a, b are of the same class, say Cr, E 6 a , g b g - '  ! 
g ~  tO, otherwise. 

From this one derives expression (2.8). Both this one and Eq. (2.9) were already 
given by G. F. Frobenius [1], [40] in 1887 and in 1898. 

IG[ ~ IA ~CdlB c~C,I 
z(AVB) = ~ A ~  [C,I (2.8) 

z (A \/  B ) = 2  lY $i (A )[lY $ i (B )I. (2.9) 
"V 

Formula (2.9), cited here without proof, is related to representation theory, the 
numbers I'y$i(A) I and [7~i(B)I, respectively, indicating how often the identity 
representations of A and B occur in the irreducible representation F v of G. 
Formula (2.8) is convenient primarily for the counting of double cosets of the 
symmetric group S,. 

The repetition frequency (2.7) is of particular use to sum decompositions of the 
type 

X O(g)=~ E E 1--~-O(aggb) (2.10) 
geG " ~eA b~Bd(gi) 

where O(g) could be numbers, wave functions, or operators, functionally depen- 
dent on the elements of G. For continuous groups, corresponding decompositions 
of integrals over the space of parameters are based on the concept of measure 
if the repetition frequency is not finite (cf. Refs. [41], [42]). 

3. The Orthogonal Group and The Symmetric Top 

Familiar and mutually related topics profitably revisited, if emphasis is laid on 
the rSle double cosets play, touch upon the Euler angle decomposition of 
rotations, its use in the classical and quantum-mechanical treatments of the 
symmetric top, and upon the representation theory of the orthogonal group 
O +(3). Though only reinterpretation of facts known, the subsequent presentation 
also may be taken as a valuable preparation for an understanding of problems 
encountered in many fields of physics concerning the evaluation of quantum 
mechanical matrix elements. As mentioned in the introduction this latter field 
of application is not treated here, explicitly. 
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A most convenient way to describe the orientation of a body in space relative 
to a space-fixed cartesian coordinate system x, y, z is in terms of a sequence of 
three rotations acting on a body-fixed coordinate system x', y', z '  which initially 
coincides with the x, y, z-flame. These rotations by angles 3', /3 and a with 
0 ~< 3' ~< 27r, 0 ~</3 < ~" and 0 ~< a < 2~" are first taken around the z-axis, then the 
y- and finally around the z-axis again. With la,/3, 3') and 10, 0, 0), respectively, 
representing the body in its final and initial position we have 

la,/3, 3")=Rz(a)Ry(/3)Rz(3")[O, 0, 0). (3.1) 

Besides these active transformations it is of advantage to use so-called passive 
ones describing the same relative change of positions from the viewpoint of the 
body, i.e. to refer the position of the x, y, z-frame to x', y', z'. In terms of passive 
transformations, relation (3.1) reads 

la,/3, 3")=Rr(-3")Ry,(-fl)Rz,(-a)[O, 0, 0). (3.2) 

Active transformations commute with passive ones, and that is one of the 
advantages when using both. The substitution of an active by a passive transfor- 
mation or vice versa depends on the position of the body in space when the 
operator acts. With this in mind, the replacement is carried out as Rq,(w)oRt,(w) 
where q' and p denote coinciding axes of body- and space-fixed frames, respec- 
tively. 

Following the product decomposition of a rotation R(a,/3, 3") as used in (3.1) 
one verifies that the first action on the initial situation, that is the rotation Rz (3'), 
may be replaced by Rr(3") and then commuted with the preceding active transfor- 
mation factors. This means that the rotation Rz,(-3") around the body-fixed 
axis z'  may be carried out independently of the other transformations; the 
rotation Rz (a) to be performed after Ry (/3), however, moves the body-fixed axis 
z '  around z on the surface of a cone. Thus, the set of operations of 0+(3) is 
obviously classified by the parameter/3 in that all the rotations R (a,/3, 3") with 
a given value of/3 in common lead the body from the initial position 10, 0, 0) 
to any position with the body-fixed axis z'  lying on the associated cone around 
z. Recasting of the operations in terms of active rotations exclusively, necessitates 
the sequence of factors as given in Eq. (3.1). It follows that the classification of 
body positions with the z'-axis on concentric cones around z is given by the 
0+(2) \ /0+(2)  double coset decomposition of 0+(3) as 

O+(2)Ry(fl)O+(2) ={Rz(a)Ry(/3)Rz(3")lO<~a <2~', 0~<3" < 2~'}. (3.3) 

Note that the classification, as we have seen, can be analyzed either in terms of 
subgroups of O+(3), where attention has to be paid to the sequence of factors, 
or alternatively in terms of subgroups of two isomorphic groups as represented 
by active and passive transformations using the advantage of not being bound 
to the sequence of operations. 

Note further that the denotation of rotations by Euler angles is unique with the 
exception of/3 = 0 where R (a, 0, 3') = R (a', 0, y') if a + 3" = a '  + 3". This fact is 
also recognized from the repetition frequency formula (2.6) since we have 
d(Ry(/3)) = 1 if and only if/3 # 0. 
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The obvious phenomenon in physics where the 0+(2)\ /0+(2)  decomposition of 
0+(3) is the natural classification aspect is the symmetric top. Classically, the 
system of a symmetric top with a given rotational energy in a field-free space 
has the spatial symmetry of a sphere, expressible by rotations relative to the 
laboratory frame and independently therefrom, it has the axial symmetry of the 
top. With initial conditions given this symmetry is reduced but two subsymmetries 
responsible for positions during the motion survive, that is the axial symmetry 
of the total angular momentum fixed in space and the axial symmetry of the 
top. Since two groups 0+(2) that represent these axial symmetries are subgroups 
of 0+(3) groups with mutually commuting elements the above argumentation 
concerning the substitution of active by passive transformations and vice versa 
holds. Thus, referring to one single 0+(3) group, classes of equivalent top 
positions, i.e. positions compatible with the initial conditions, correspond to the 
0+(2) \ /0+(2)  decomposition of 0+(3). 

As far as the abstract group 0+(3) is concerned, clearly, like this group itself 
its irreducible representations DZ(R(o~,/3, 3')) should be viewed in the light of 
the 0+(2)\ /0+(2)  decomposition which, again, in accordance with the Euler 
angle factorization, reads as 

DFn(R(a,  fl, T)) = Y~ D~v(R~(a))D~q(Ry(13))D~.(Rz(3,)) 
P,q 

i r n a r . ~ f  / T ' !  / ~ x \  in'g = e 1 . 1 m n ( l ~ y k D ) ) e  . (3.4) 

With this choice of row and column labels right- and left-hand factors have 
become simpler allowing to identify irreducible representations of 0+(2) 

D~ .  (R~ (to))= i.,,. e 8,~,. (3.5) 

The evaluation of the matrix elements is straightforward except for the double 
coset generators Ry (fl), where Jacobi polynomials can be used to advantage (cf. 
Ref. [43]). 

Let us think of irreducible representations in general as sets of bijections of the 
representation space onto itself; then a basis is preferably chosen to by symmetry- 
adapted, i.e. such that restriction to a subgroup representing this symmetry leads 
to block diagonalization and restriction to double cosets with this subgroup as 
left- and right-hand factor leads to triple products of matrices with a class-specific 
generating matrix in the middle. The particular type of double cosets in our 
examples distinguished by right- and left-hand factors appears to be characteristic 
of the usual type of representations and is associated with the fact that the 
bijections refer to the particular case where range and domain are identical. 

The symmetric top treated quantum mechanically exhibits again the utility of 
the 0+(2)\ /0+(2)  decomposition in a slightly different form which we want to 
sketch very briefly as it is related to the representations of 0+(3) given above. 
The Hamiltonian reads 

H=--~L2+ 2-~L2~,. (3.6) 
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Here, 0 and 0' denote scalars, L 2= ~AL~ = ~L~, is the total angular momentum 
operator, L~ and L~, its components along the space-fixed and body-fixed axes 
z and z', respectively. H, L 2, Lz, and Lz establish a set of commuting operators 
to be diagonalized simultaneously. Therefore, eigenstates IFMN) exist that, in 
the Schr6dinger representation, are functions on the space-fixed sphere, in Dirac 
notation (a,/3, y lFMN),  satisfying the relations 

L2(ce, fl, y lJMN) = J (J  + 1)(a, fl, y ]JMN) 

Lz (a, [3, 3']JMN) = M(a ,  [3, y f fMN) (3.7) 

L~,(a, fl, y IJMN) = N (a, fl, 3' ]JMN) 

and thus we have 

I1(J+ 1t N 2 
H(a ,  [3, TIJMN) = t ~ ~-2-07} (a' fl' T]JMN). (3.8) 

These functions are derived with the aid of the O+(2)VO+(2) double coset 
decomposition of 0+(3) and its connection to active and passive transformations 
along with the rules for their mutual substitution 

(a, fl, y IJMN) = (0, O, OIR ~ (T)R ~ (fl )R ~ (a )IJMN) 

= e-'~u(0, 0, 01Rz,(3')R*y (/3)IJMN) 

= e -i'~(O, O, OIR ~ ([3)R~,(y)IJMN) 

= e-i'~M(O, O, O]R~y(fl)lYmN) e ~vu 
--i~ J- [D * [O ~ e iTN. 

= e I J  MN~at~. y ll,.l ) (3.9) 

From the conventional normalization it follows that the numerical factor associ- 
ated with the last step in Eq. (3.9) is equal to one. Since the resulting functions 
establish a complete set, the conclusions presented in Eq. (3.9) prove that it is 
the set of eigenfunctions of the symmetric top. The elegance of this derivation 
is due to the particular means employed and it may be appreciated when 
comparing with the effort that arises in checking that (a, [3, y]JMN) satisfies the 
Schr6dinger equation (cf. Ref. [43]). 

4. Bilateral Classes 

It will become apparent, particularly in Chapters 5 and 6, that many physical 
and chemical classification problems related to double cosets allow interpretation 
in terms of a classification of bijections. A casual examination of the various 
class concepts available in group theory, on the other hand, indicates that most 
of them permit interpretation related in some way to bijections; a unifying aspect, 
however, has not been stated until 1976 when the concept of bilateral classes 
was introduced and investigated [18], [19]. The present Chapter is devoted to 
this idea since we anticipate interesting applications in the future, as well as a 
better understanding of the particular r61e double cosets play in applications. 
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Concepts commonly used for a classification of elements of a group G refer to 
one or two subgroups A, B ___ G as shown in the following list: 

a) right coset Ag =-{agla cA}  

b) left coset gB - {gb Ib ~ B} 

c) double coset AgB ---{agb-lla a A, b ~ B} 

d) conjugacy class ~A/(g)--{aga-l[a cA}. 

In case (d) the choice A = G is common. The covering concept of "bilaterial 
class" is defined by the rather natural extension 

O(g) m {sgt--ll(S, t) e Q} (4.1) 

where Q is a subgroup of G • G. 

One easily specializes to double cosets and conjugacy classes, respectively, by 
subjecting the subgroup Q alternatively to the particular choices of (4.2), the 
notation used here fitting into a systematic scheme discussed later, 

C AV~ - { ( a ,  b)la EA, b ~B} 

Q\A/=-{(a, a )la cA}. (4.2) 

The classes quoted and others not listed above are found to be particular types 
of bilateral classes. Beyond that, bilateral classes either non-specialized or 
specialized by non-conventional requirements apparently fill a gap in the realm 
of classification concepts, desirable for applications in physics and in chemistry. 

As to classification schemes in a given group the concept of double coset, as we 
have seen, is the more special one compared with the idea of bilateral classes Z. The 
opposite statement, however, applies it bilateral classes in a group G are compared 
to particular double cosets in the direct product G x G. This statement can be 
verified by the aid of a map X from G x G onto G, defined as 

{G xG---~G 
X: (g,, g,,) ~ g,g,,-1. (4.3) 

The elements of G • G mapped onto the same image element in G establish 
the left cosets of the so-called diagonal subgroup O\~/of  G • G as given in 
(4.2). Note, however, that O~O/, as a rule, is not an invariant subgroup in G • G 
and, consequently, X is not a group homomorphism. Using any given subgroup 
O ___ G • G with elements (a, b) ~ O one concludes from the relation 

X: (ag'g, bg"g) ~ ag'g"-l b -1 (4.4) 

that, associated with the map X, there is a bij ection ~, from the set of O V O \~/double 
cosets of G x G onto the set of bilateral classes O(g) of G 

A. [{O (g', g,,)O\O/](g,, g,,)~ G x G} --~ {~ ~ G} 
X.~Q(g,, g,,)Q\O/ ~ O(g,g,,-1). (4.5) 
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The one- to-one correspondence as expressed in Eq. (4.5) provides technical 
means for the transfer of formulas, as for enumeration, from double cosets to 
bilateral classes. Beyond this, it concerns the basic classification philosophy 
relevant to a diversity of phenomena in physics and in chemistry. To cover the 
major  scope of requirements as far as applications are concerned it will be 
rewarding to start with a classification of purely mathematical objects; i.e. to 
talk about bijections and their classification in view of symmetry. 

Let G be the unrestricted symmetric group, defined as the group of bijections 
on a set R. Let  M and N be two further sets equicardinal with R, and let ~, 7/ 
be a pair of bijections from R onto M a n d  N, respectively, both commuting with 
the elements of G, 

~C:R :,--~M g ~ 1 7 6  
(4.6) 

rl : R >-~, N g o rl = r / o g j  

Commutativity as stipulated here can possibly define the action of the group G 
on M and N when it is known in respect of R, or it may be taken alternatively 
as the defining property of the particular choice of ~ and r/ in case the action 
has already been defined on R, M, and iV. Regardless of the viewpoint, each 
pair of simultaneous bijections from R onto M and N can be presented with 
reference to ( and r / as  an operator  to, element of an operator  set D' x IT', 

to = (g' o ~, g,,o n) e f r  x i'~,, ' (g', g,,)~ G x G  

to: R ~-> U,, c M x N  (4.7) 

where f~' and D" are the sets of bijections from R onto M and from R onto N, 
respectively. Each operator  to maps R onto a particular subset Uo, of M x N, 
which represents a one- to-one correspondence between and M and N. Hence 
the image U,o also determines a bijection from, say, N onto M. Such a subset 
or the bijection associated does not change if prior to to a bijection of R onto 
itself is performed. Therefore,  equivalence classes in D' x D" are specified through 
the image the operators produce upon application to R. To put this result into 
a simple form it helps to use again the map h' slightly extended beyong the range 
of definition in Eq. (4.3) and to refer to a reference bijection e from N onto M 
as follows: 

j'f~' x ~ " ~  
X:/(g '  o ~, g" orl)~-->g' g "-1 oe, e ----~or1-1 (4.8) 

Accordingly we obtain an interpretation of (4.5) in terms of bijection classes 

A [{Q(g', g")Q \c/~ (~:, r/)l(g', g") ~ G x G} >-~ {O(g) o e Ig ~ G} 
X : ~O (g,, g,,)O\O/o (~, 71) ~ O(g,g,,-1) o e. (4.9) 

The one- to-one  correspondence (4.9) touches upon facts related to geometry 
and physics. First, a left coset of O\o/  in application to (~:, r/) collects all the 
operators of D' x D" that represent the same bijection from N onto M ;  second, 
right cosets of Q, applied thereafter,  may be taken as collecting symmetry 
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equivalent bijections from N onto M. Acting from the left on both the range 
and the domain the group O appears as the symmetry group of bijections defined 
with satisfying generality since range and domain are equally taken into consider- 
ation. Statement (4.9) shows that the symmetry equivalence of bijections, in this 
most general interpretation, is equally well taken into account when bilateral 
classes of G are applied to a reference bijection e. As to an appreciation of the 
present result, it helps primarily those concerned with applications to have a 
most intuitive understanding of the symmetry concept mentioned. That is why 
an intimate knowledge of the structure of subgroups of a direct square G x G 
is desired. This structural information has already been made available by 
E. Goursat [44] in 1889. 

According to Goursat's theorem, given in reference to finite groups, any subgroup 
of a direct square is characterized by a pair of subgroups A, H and B, K in 
each of the factors of G x G and an isomorphism ~. It is required that A and 
B be invariant subgroups of H and K, respectively, such that the factor groups 
are isomorphic H / A  ~ K / B  ;/z denotes any chosen isomorphism map between 
these factor groups. The determinative quantities of a subgroup O of G x G 
subsequently specified by the label A\Ht.LK/B are properly defined through 

hr - { g ' s  al(g', g") e O} 

A =-{g'e Gl(g', e) e Q} 

K --= {g" ~ Gl(g', g")~ Q} 

B - {g"~  G](e, g")~ Q} 
(4.10) 

as one proves corroborating the properties postulated. For convenience we refer 
to a system of elements of H and K representative for A- and B-cosets, 
respectively, and to a map concerning their indices which are fixed provided/z 
is given, 

l H / A  ~ K / B  
tx : [Ahi ~ Bk~(i). 

Any subgroup Q of G x G and an associated bilateral class O(g}, according to 
the characteristic label A\HI~K/B, permit a formal account as follows: 

QA\H~K/B ~ {(aht, bk,(o)lahl ~ Aht ~ A / H ,  bk,,, ~ Bkm ~ B / K }  

=- ~.JA (hi, k,m)B =- ~_JAh~ x B k ,  m 
A \ H t a , K / B  (g) _ - 1  - 1  

{ahtgk~(ob ]ah~ ~Aht  cA~H,  bk,~ cBkm ~ B / K }  

- [..JAhtgk ~t)B. 

(4.11) 

Note that any bilateral class may always be conceived as a particular union of 
double cosets. 

Goursat's theorem becomes a statement in relation to intuition as we need it, 
if one adds an interpretation in terms of correlation with emphasis on the r61e 
played by the subgroups A x B and H x K. Both of these groups are members 



458 E. Ruch and D. J. Klein 

of a chain 

A x B c Q c H •  (4.12) 

A • B and H x K are particular direct products in respect of G x G in that the 
direct factors of these subgroups are subgroups of the respective direct factors 
of G x G. This fact entails that the elements of A x B or of H x K represent all 
the combinations of elements admissible from the left and from the right factors 
in A xB ,  denoted by A and B or by H and K, respectively; in other words, 
when passing from G x G to A x B or to H x K  it is not the combination but 
the selection of elements of each factor that is reduced. This phenomenon shall 
be stated by saying that both A x B and H x K  are uncorrelated subgroups of 
G •  

Reexamination of the definition presented in (4.10) shows that A •  is the 
greatest uncorrelated subgroup contained in Q, and H •  is the smallest 
uncorrelated subgroup containing Q 2. With this in mind one verifies the following 
summary: 

With reference to G • G it is correct to call the direct product H x K / A  •  
with elements (Ahi, Bkj) an uncorrelated factor group. Restriction to elements 
of the form (Ahi, Bk~(i)) leads from H x K / A  • B to its subgroup Q / A  • B. Thus 
it is demonstrated that the isomorphism/z introduces correlation inherent to Q 
in the uncorrelated factor group H •  x B  leading to the group Q / A  x B 
which presents this correlation in pure form as the only uncorrelated element 
is the unit element. Because of this result we call Q / A  • B the correlation group 
of Q. 

From the foregoing discussion it follows that correlation is the property that 
permits a natural classification of subgroups of G x G  in view of structural 
particularities. Two limiting cases are distinguished by Q / A  • B = Q and Q / A  • 
B = E, characterized as, we shall say, by the absence of correlation and by total 
correlation, respectively. If neither of these conditions is fulfilled we speak of 
partial correlation. 

The following list gives some more detailed specification of the type of subgroups 
and of the associated type of bilateral classes. It is recommended to think in 
terms of bijections where our terminology refers to symmetry. Then we have 
symmetries in reference to range and domain, uncorrelated, totally correlated, 
and partially correlated. The groups A and B play the part of symmetry groups 
of range and domain, respectively. H and K encompass all the operations 
involved in symmetry operations. The associated classes thus denote bijection 
classes in view of symmetry equivalence. The following list contains a particular 
selection of cases that are of prime interest. The notation proposed has already 
been used, to some extent, in the present Chapter. E denotes the identity 

2 In this context 'greatest' and 'smallest' are statements expressing that all other subgroups of this 
type either are contained in the group in question or contain it, respectively. 
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subgroup, ~ specifies the identity isomorphism; if there is no choice in the 
isomorphic map/z  is replaced by a dash. 

1) A\ /B  no correlation, (short form of A\A - B / B )  

QA\/B --A xB  

A \ / B  ( g )  = AgB. 

2) \HI~K/total correlation, (short form of E\H~K/E) 

O_ \"K/ '--- {(h,/x (h ))lh e H} 

\H.K/(g) ~ {hgk-~lh e H, k = t~ (h)} 

[H 
tZ:th ~-~. tz (h). 

3) A\H/A  (partial) diagonal correlation, (short form of A\H~H/A) 

O A \ H / A  ~ ~JAht xAht 
l 

A \ H / A ( g )  =-- UAhtgh flA. 
l 

4) \HI (total) diagonal correlation, (short form of E\HLH/E) 

0 \HI =- {(h, h)Ih ~ H}-= (H x H)D 

\"/(g)--= {hgh-llh ~ H}. 

The number of bilateral classes contained in a given decomposition of a group 
G, the orders of the single classes, and their repetition frequencies are easily 
deduced if one recalls the connection with double cosets in the direct product 
group G x G (cf. Eq. (4.4)). Thus, from Eqs. (2.6), (2.4), and (2.9), formulas 
(4.13), (4.14), and (4.15) are obtained with the convenient abbreviation O for 
O_ a\"K/B and i = IH/AI = IK/B]; d(~ and [~ I, respectively, denote the 
repetition frequency and the order of a bilateral class O(g). The number of these 
classes in G is denoted by z(~ 

d ( ~  (g)) = Y~ [Ah~g c~ gBk.(~ll = Y~ IAht n gBk,.~g-al 
l l 

iO(g)} = ilAIIB[ 
E IAh~ ~ gBk~g-al 
l 

(4.13) 

(4.14) 

z(O())  = 1 
iIA[[B I g~  ~t IAh, ~ gBk,,(,,g-~l 

IG[ IC nAh,llCr ~Bk~(,)l 
- ilAIIBI ~ ~ ICrl 

(4.15) 
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5. Arrangements 

Classification o[ Molecules with the Same Gross Formula 

An understanding of many phenomena in chemistry takes advantage of, or is 
entirely based upon, an appropriate classification of compounds and their 
molecules. Molecules made up of the same kind and number of atoms but 
differing in their spatial structure are called "isomers", a concept which is equally 
used to distinguish the compounds thereof. A classification like this is necessitated 
and referred to by the name of "permutational isomers" if the isomers are 
derivatives of a so-called parent compound with which they have a representative 
"molecular skeleton" in common, differing only in the distribution of a given 
assortment of ligands on given skeletal sites. One specializes to the concept of 
"stereoisomers" if the molecules show only limited mobilities such that differenti- 
ation is disclosed by structural characteristics compatible with the assumption 
of a rigid skeleton. If the skeleton is not particularly simple, has spatial symmetry, 
and some of the ligands are of the same, some of different kind, then a survey 
of distinguishable stereoisomers requires systematic means. A concept like 
molecule or even isomer is not always obvious. Molecules distinguishable at a 
low temperature may not be distinguishable if the temperature is high, or a 
time-averaged structure may be entirely different for experiments where the 
characteristic observation time is not the same. Thus, for these and other reasons 
a more adaptable notion of configuration, subsequently called Q-configuration, 
is required in order to obtain a classification of steroisomers according to broader 
equivalence ideas. To be in a position to translate a vague conception of such 
chemical objects into a mathematically clear-cut formalism and to have a mathe- 
matical tool available to handle systematically all sorts of concerned questions 
touches upon some basic needs in stereochemistry. 

The number of stereoisomers can be found with combinatorial methods given 
by G. P61ya [45] in 1937. His procedure was not designed to help with a 
formulation of the classification idea or to be of use to an analysis of individual 
characteristics of single classes. Bilateral classes, however, and double cosets in 
particular, applied to bijections, in short, "bijection classes" are the mathematical 
objects which, acting the part of an algebraic analogue, reflect the type of 
classification ideas under discussion. This fact also involves a simple method of 
enumeration both of isomers and of more complex configurations according to 
a diversity of classification ideas, and, in addition, allows an immediate translation 
of a variety of related problems from an intuitive level to an algebraic formalism, 
thus providing a more rigorous analysis. The fortunate equivalence between 
chemical reality and mathematical objects was first pointed out in particular 
reference to double cosets [38] in 1970. Yet, the generalization achieved with 
the concept of bilateral classes met a demand in the field of stereochemistry. 

a) Permutational Stereoisomers (Subsequently Abbreviated to Stereoisomers ) 

Without loss of essentials for the present classification problem, the reader may 
imagine a set of simplified models named standard models, introduced by one 
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of the authors (E.R) [46] in 1977, and taken as a substitute of the chemical 
reality of stereoisomers. A simple rigid geometrical figure with a given number 
of distinguished points and the same number of spheres each centered at one 
of these points constitutes a model of said type. Different kinds of ligands in a 
derivative are indicated by different diameters of spheres distributed correspond- 
ingly. Visually distinguishable models obviously represent distinguishable 
stereoisomers. In many cases, these models though being extremely simplified 
correctly represent the overall symmetry of the real chemical object. Individual 
deformations of skeleton and ligands as observed in real molecules mostly do 
not reduce the overall symmetry as indicated by the associated standard model. 
The relation between standard models and chemical reality is thoroughly dis- 
cussed in the above-mentioned paper [46]. When looking at standard models 
in lieu of molecules we resort to a simplified picture avoiding cumbersome 
analyses of whether symmetry statements correct in respect to the model, apply 
to nature strictly or in an approximative sense only. 

Classification according to stereoisomers is trivial as every arrangement of spheres 
constitutes its own species as long as skeletons without spatial symmetry are 
concerned and no pair of identical ligands appears. The situation changes when 
symmetries are observed. First, due to skeletal symmetry certain rearrangements 
of ligands may lead to the same result as a proper rotation of the whole molecule 
does, and, therefore, are not recorded by most of the usual experiments. Second, 
the particular ligand system, as for differentiation according to ligands of the 
same and of different type, is characterized in that exchanges of equally sized 
spheres are not noticeable; as a consequence reduction of distinguishable 
stereoisomers follows. In short, two permutation groups A and B representing 
spatial symmetry of the molecular skeleton and permutational symmetry of the 
ligand system, respectively, contribute to the viewpoint responsible for symmetry 
equivalence. Both of these groups may be interpreted as a representation of 
symmetry in terms of ligand permutations. As to stereoisomers, A is a homo- 
morphic image of the pure rotational symmetry of the skeleton and B character- 
izes the particular ligand system, composed of t kinds of ligands, by the direct 
product B --- S~ 1 x S~2 x.  �9 �9 x S~, with the symmetric groups S~, of degree ai, 
satisfying ~'~ ai = N .  

The intuitive conception of bilateral classes as invoked in Chapter 4 takes effect 
in view of the present classification objective. The set of ligands and the set of 
skeletal sites act the part of range and domain of bijections representing 
stereoisomers, provided there be no symmetry. For the more general cases 
including symmetry, classes of symmetry equivalent bijections are sought where 
the requisite symmetry is A x B, which is a subgroup of SN x SN and is uncorrelated 
in its dependence on range and domain. Such classes, therefore, are determined 
by double cosets as 

n• (gr)~ =-- A g r B o e .  (5.1) 

The far-reaching analogy between steroisomers and their algebraic counterpart 
is to be utilized for a variety of questions. One of prime interest refers to the 
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symmetry of individual stereoisomers. The total skeletal symmetry is specified, 
in terms of permutations, by a group that shall be denoted by H disregarding 
whether it is identical with A or not. In case of chiral skeletons we have H = A ; 
this identity may also happen to come about in exceptional cases of achiral 
skeletons i(e.g., of planar skeletons). However, the standard situation for achiral 
skeletons is that the elements of A, representing proper rotations per 
definitionem, do not represent improper rotations at the same time; so A is a 
proper subgroup of H. The symmetry of a given stereoisomer is represented by 
the permutation group Sr according to Eq. (5.2) 

Sr = H ~ g~Bg~ ~. (5.2) 

Since S~ is invariant under the substitution gr ~ g~ ~ Hg~B up to conjugation with 
elements of H, it refers to the associated isomer; it represents the molecular 
symmetry since it contains those elements of H which, at the same time, are 
elements of the group grBg-; I, effecting permutations among correspondingly 
distributed spheres of equal sizes. 

Note, finally, the enumeration of stereoisomers is performed through the use of 
formulas (2.8) and (2.9). Preference is given to (2.8). 

The classification given in (5.1) differentiates between mirror-image 
stereoisomers that possibly occur in case of molecules with an achiral skeleton 
and exclusively achiral ligands. Such so-called enantiomers, as a rule, occur if 
the achiral skeleton is not a planar one. To disregard enantiomerism means that 
we preclude enantiomers from being members of different classes. All one has 
to do is to use H instead of A since then improper rotations do not lead to 
distinguishable objects. Such classes, mostly called stereoisomers, as well, accord- 
ing to a nomenclature convention in chemistry are defined by 

H • (gr ) o e = HgrB o E. (5.3) 

One usually speaks of a configuration if in contrast to the above emphasis is 
laid upon differentiation between enantiomers. 

Q-Configurations and  Partially Correlated Symmetr ies  

Enantiomerism among stereoisomers may occur even when chiral ligands belong 
to the ligand system. Necessary prerequisites are an achiral skeleton, a racemic 
ligand system, i.e. the ligands must be either achiral or, if chiral, pairwise 
enantiomeric, and an appropriate fixation at the ligand sites. When chiral ligands 
are involved a classification omitting the distinction of enantiomers just because 
a sufficiently simple anschauung is not available appears to be confusing even 
for very simple skeletons. The classification objective, however, is significant 
since a diversity of chemical and of physical properties of chemical compounds 
do not depend on enantiomerism, and experiments designed correspondingly 
do not even record respective differences. 

Transition from a stereoisomer to its mirror image, i.e. reflection of the whole 
object, results when a permutation of ligands equivalent to a rotation of the 
skeleton is combined with a simultaneous substitution of each chiral ligand by 
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its mirror image; appropriate fixation being presumed. This latter requirement 
can be dropped because it is superflous when colored standard models are 
discussed instead. For these models we stipulate colored spheres, white ones for 
achiral ligands, green and red ones of equal size for chiral ligands that are mirror 
images. In application to the models, reflections only in conjunction with an 
overall exchange of the colors red and green are an equivalent of the transition 
from one isomer to its enantiomer. 

Recalling the definition of the groups A and /4, and in view of the present 
conditions, one confirms the coset decomposition H = A t~ i r a  where the permu- 
tation or represents a reflection but not at the same time a rotation of the skeleton. 
Let  B denote the symmetry group of the ligand system established by all the 
permutations among spheres of equal size and color, and r be a permutation 
that effects exchange of each red sphere by an equally sized green one. So there 
is a group K = B ~ r B  distinguished in that B is a symmetry group of the ligand 
system and the coset rB contains all the permutations among spheres of equal 
size that effect the total exchange of the colors green and red. Thus, as before, 
A x B is the symmetry group answerable for symmetry equivalence in case 
enantiomers be distinguished while, in addition, the set era • ~-B has to be added 
in order to establish the symmetry in cases this distinction be not made. In short, 
partially correlated symmetry under discussion is given by the group 

Q A \ H - r / B  =-- (A  x B )  �9 • rB) .  (5.4) 

With the results of Chapter 4 in mind the desired classes are found to be 
(comp. [47]) 

A\H-K/B(gr) o e ~ ( A g r B  ~ Ao'grrB)  ~ e. (5.5) 

Note that for the particular cases where or, or z, or both, do not exist, enantiomer- 
ism does not occur. Correspondingly the symmetries become uncorrelated and 
the associated classes simplify to double cosets as follows: 

,'~A x K :  AXK(g,.)oe 

Q a \ n - r / B  -~H x B:  n• o e (5.6) 

' ~A XB:  AXB(gr}Oe. 

The distinction of enantiomers and its respective omission touch to a great extent 
upon the prevalent classification interest in the field of stereochemistry. The 
numbers of classes associated can be used to count chiral and achiral objects 
separately, in the cases discussed up to here. The numbers of achiral and of 
chiral stereoisomers denoted by z,, and zx, respectively, are obtained from the 
following system of equations that is easily verified, 

z ( A \ . - , , / ~ ( ) )  = z~ + �89 

z (A\ /B( ) )  = Z,~ +Z, , .  (5.7) 

According to a requirement mainly arising from the conditions encountered in 
nature, as mentioned in the beginning of the present Chapter, a concept is 
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recalled that covers classification objectives where various differentiations, 
obviously present in case of rigid molecules, are not made. The skeleton may 
undergo internal twists, rotations or oscillations such that the observations under 
discussion concern a time-averaged molecular structure which can be character- 
ized by experimentally non-distinguishable situations, so-called conformations. 
Correspondingly, the skeletal symmetry groups A or H or both must be adapted 
to the particular requirements. On the other hand, the ideal of ligand assortment 
symmetry, too, may be subjected to various interpretations in order to match 
the disregard of particular differences of ligands, e.g. of isotopic atoms, or to 
take into account restrictions in the spatial relationship among ligands, e.g. 
among those partially bridged together. 

A particular situation arises in connection with so-called bidentate ligands, i.e. 
pairs of ligands bridged together. As the two partners of a bridge are considered 
non-separable, the group B has to be chosen accordingly. Permutations of ligand 
members which do not effect simultaneous permutations of equivalent bridges 
must not be contained in the group B, and the mutual exchanges of the members 
of bridges belong to B if the bridges have a symmetry which is to be represented 
in this way. Spatial constraints imposed by limited lengths of bridges need to be 
handled with special care. One finds explicit discussion of bidentate ligands, as 
well as of other "constrained" situations in the literature [48]. 

Whatever the particular classification objective may be, either to satisfy theoreti- 
cal requirements or to match experimental facts, it is concerned with the distribu- 
tion of ligands at the sites of a skeleton. Therefore it always leads to the problem 
of classifying bijections which was solved in Chapter 4. For obvious reasons 
we shall call such classes O-configurations where O is a subgroup of SN • 
chosen appropriately. 

Examples and Supplementary Remarks 

The following examples are to facilitate the technical evaluation of the theory 
presented; they are selected to achieve this with a minimum effort and without 
being trivial, to allow an intuitive testing of single steps. The chemist may take 
the objects presented in Figs i to 3 as the models of the allene skeleton and its 
derivatives. The numbering of skeletal sites in Fig. 1 is standard also to the other 
figures; thereto related, the action of the group H and its subgroup A can be 
verified as symmetry operations associated with the achiral skeletal symmetry 
D2a and its chiral subsymmetry D2, respectively. Subsequently, however, these 
permutations are to be interpreted as acting on spheres which are placed at 
respective sites. 

4 3 

7 2  D2: = A  ={(1), (12)(34), (13)(24), (14)(23)} 
(12)A ~{(12), (34), (1324), (1423)} 

2 D2d: =H=-A~(12)A 
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Fig. 2 shows, illustrated by standard models, stereoisomers with exclusively 
achiral ligands and their respective classification with and without distinction of 
enantiomers, i.e. QA\/B_ and Q , \ m _  configurations, on the assumption that one 
kind of ligands occur twice in the ligand assortment. The elements of the group 
B (like those of A) are related to site numbers and represent the composition 
of the ligand assortment in reference to the stereoisomer associated with A(1)B. 
Moreover, the symmetry groups of the stereoisomers are explicitly worked out 
according to Eq. (4.2). 

A(1)B A(23)B A(24)B 

7 7 ~ B---{(1),(34)} H c~B -={(1), (34)} 

H n (23)/3(23) ----- {(1)} 

H n (24)B (24) -- {(1)} 
\ / 

v 
H(1)B H(23)B 

Table 1 and a formula for the order of conjugacy classes Cr of the symmetric 
group SN provide all the information needed for ready application of formula 
(2.8). In the expression for ICr[ the letter l denotes the length of a cycle, and 
al(r) the number of times a cycle of length l occurs in a permutation of the class 
c,. 

Table 1 N! 
Ic, I-  

C 16',1 ICrnAI IC, r~BI IC, nil[ Yl la~(r)at(r)! 
l 

(.) 1 1 1 1 
(..) 6 0 1 2 
(..)(..) 3 3 0 3 
(,..) 8 0 0 0 
( . . . .  ) 6 0 0 2 

24 
z(aV~()) =~--~. 1 = 3 

The more complicated case of four different ligands, two of them achiral and 
two of them chiral but mirror images of each other, is illustrated in Fig. 3. The 
enantiomeric ligands, following a suggestion by V. Prelog [49], are represented 
by equal spheres with mirror-image letters F and q as the substitutes of the 
colors red and green used earlier. Since B is the unit subgroup in the present 
example, A V B - d o u b l e  cosets degenerate to right cosets of A. Configurations 
without a differentiation of enantiomers are represented by bilateral classes 
associated with the group QAm-K/B  as indicated in the figure. Counting can be 
performed by virtue of formula (4.11). The numbers of chiral and achiral 
stereoisomers are determined according to Eq. (5.7). 
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( 1 ) (34) (23) (24) (234) (243) 

\ / \ / 
W 

(1) (34) (23) (234) 

H = - A O ( 1 2 ) A  

K --B�9  (34)B, B = {(1)} 

QA\H-K/B ----A XB�9 (12)A x (34)B 

A\H-K/B((1))=--{(1), (12)(34), (12)(24), (14)(23)} 

A\H-Km((34) )  ~ {(34), (12), (1324), (1423)} 

A \ H - K / B ( ( 2 3 ) ) ~ { ( 2 3 ) ,  (1243), (1342), (14), (1234), (24), (13), (1432)} 

A\H-K/S((234) ={(243), (123), (134), (142), (124), (234), (132), (143)} 

Z (A\/B())  = 6 = Z,, + Z X 
Z ( A \ H - K / B ( ) )  = 4 = Zo~ "91- l z  x Zot = 2, ZX = 4. 

Fig. 4 illustrates what has been called Q-configuration; the model skeleton shown 
can be identified with the one of ethane and its derivatives. At a low temperature 
these molecules have a more or less rigid skeleton of symmetry D3a, but as the 
temperature increases, they allow internal rotation around the axis of the figure 
such that the symmetry group associated, written in terms of the SchSnflies 
notation, is (C3  x C3)C2v .  The chiral subsymmetries a r e  0 3  and ((?3 x C3)C2, 
respectively. For specification of a racemic ligand system which contains achiral 
ligands exclusively or in part the groups B or both B and K are used as discussed. 
The groups A and H as listed in the figure apply when rotation occurs: 

6 

5 

3 

( C 3 x C 3 ) C 2 :  A - [ { ( 1 ) ,  (123), (132)}x{(1), (456), (465)}]. {(1), (14)(26)(35)} 

( C  3 X C 3 ) C 2 v  : H = - A � 9  (14)(25)(36)A. 

Summing up, several main goals may be stated in connection with the 
classification of stere�9 feasible whenever possible with the mathematical 
instruments presented: firstly, to give a precise meaning to configuration concepts 
conceived rather vaguely; secondly, to transform the classification idea into a 
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clear-cut form such that the classification is easily worked out; thirdly, to count 
the number of classes; fourth, to generate the appropriate class labels; and fifth, 
to find an at least partial characterization of individual classes which is more 
informative than mere labeling. The first three points have been brought forward 
here in detail while canonical labeling is the topic of papers by H. Brown, L. 
Hjelmeland, and L. Masinter [50], H. Brown and L. Masinter [51], and H. 
Brown [52]. The individual characterization of single configurations according 
to particularities of any kind is a challenge which cannot be satisfied in any case 
since possibly nothing of this kind does exist. Mere labeling, though a colorless 
substitute, then has to be used in place of the above or as a supplementary 
means to make the notation complete where natural characteristica do no suffice. 
An obvious individual criterion is configurational symmetry, as pointed out 
earlier. There are other possibilities such as the subclassification of a configuration 
in terms of constituent "conformations" or the like. A classical issue strongly 
associated with the subclassification is the identification of steroisomers as mem- 
bers of a single so-called "structural isomer". Some special mathematics useful 
to an analysis of such questions is found elsewhere [48]. 

6 Rearrangements 

Classification of Chemical Reactions 

Permutations are used to label and classify not only chemical species but also 
reaction processes which cause permutational isomerization or, in other words, 
reorganization of compounds from one permutational isomer to another. Basi- 
cally, such changes are explained as the result of intermediate deformations of 
the molecular skeleton by twisting motions, inversions, vibrations, etc. Summing 
up, it is observed that the mechanisms of such reactions primarily depend on 
the properties of the skeleton, and secondarily on the substituent ligands. 

This experience, as a first approximation, offers to classify isomerization processes 
on the basis of a complete neglect of all the effects that are due to the particular 
type of ligands. Limitations inherent to such an idealization have to be kept in 
mind, nevertheless, respective comprehension will have its merits if based upon 
such a scheme generally applicable even though, and just because, deviations 
from rules involved have to be expected for which, in turn, one may hope to 
find an interpretation with physically, or chemically, realistic rationales. This 
situation explains proposals made since 1970 to discuss the reaction mechanism 
involved on the basis on an appropriate classification and to describe concerned 
classification schemes in this context in a more or less semi-empirical and ad 
hoc manner [53], [54], [55]; in particular it explains the attempt to give a precise 
definition of the classification idea and to develop mathematical means that allow 
for strict analysis and for formal application [39], [56], [57]. 

The appropriate means to discuss the classification of rearrangements evidently 
are the same as those which have proved to be valuable in case of arrangements. 
This, one infers from the exposition of Chaps. 4 and 5. Within the context of 
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arrangements, bijections from a system of ligands onto the equicardinal set of 
skeletal sites were under discussion; now bijections from the set of skeletal sites 
onto itself have to be classified. The arguements needed for the present problem 
differ slightly from those of Chap. 4, and, yet, contribute further structural 
viewpoints and an even stronger appreciation of the part played by bijection 
classes. The subsequent argumentation may be followed with this goal in mind. 

Isomerization reactions involve that the skeleton, after intermediate deforma- 
tions, finally coincides with its initial geometry. Therefore, one may be certain 
that rearrangements of ligands are equivalent if they can be identified by conjuga- 
tion with some elements of the group H which represents the total skeletal 
symmetry, i.e. equivalence of g and g' follows from g '=  hgh-1, h ~ H. Preceding 
and succeeding rearrangements that only act as rotations of the educt and of 
the product, respectively, also, do not change the result of a given rearrangement; 
in other words, the equivalence of permutations g and g' also follows from 
g' = a'ga"; a', a" ~ A. Summarizing, two classification principles have to be taken 
into account leading to the classes {hgh-~l(h, h)~ O\W} and {a'ga"-ll(a ', a")~ 
QA\/A}, each of these representing a sufficient condition and both, together, a 
necessary alternative for equivalence in the sense requested. These two conditions 
have consequences in common as expressed through the intersection group 
{~)\H/ ~ Q A V A  =Q\A/, but the very group fully accounting for symmetry 
equivalence, as we need it, has to be defined as the smallest group containing 
both of these subgroups, Q\H/ and QA\/A. Thus one obtains the symmetry group 
required and the appertaining classes as follows: 

QA\/AvQ\H/ = A • A �9 o'A x trA= QA\H-H/A 

A\H-H/A(g)~ = (AgA w Atrgo'-lA )oe. (6.1) 

In the case of a chiral skeleton, o, does not exist and thus the rearrangement 
classes are double cosets AgAoe. The same simplification, in principle, comes 
about when the skeleton is achiral and no distinction is made between products 
with ligands in mirror-image positions; then the classes derived simplify to 
so-called racemic rearrangement classes 

H\/t-I(g)oe = HgHoe. (6.2) 

From a concise historical review on the present subject one obtains some nice 
illustration of how mutual profit accrues from the confrontation of chemical and 
of purely mathematical questions. In contrast to the classification of arrange- 
ments, where the chemically significant problems are solved by double coset 
decomposition, the classification concerning isomerization processes necessitates 
classes that are unions of double cosets even in case of the standard situation. 
This fact had been stated and rationalized at first [39] when the concept of 
bilateral classes was not yet available. The arguments used in that paper are 
essentially those ones presented above, and a representative list of examples 
contained therein is, in part, reproduced in table 2 where each of the permutations 
quoted stands for its own class. J. Musher [55], at almost the same time, arrived 
by intuitive means at the correct permutation classes for the particular cases of 
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Table 2 

469 

Number of 
Skeleton Symmetry Modes Representatives of Modes 

3 4 

4 

4 

5 

5 

2 

4 6 

2 

5 

6 

6 

2 

C2~ 6 (t), (12), (13), (123), (13)(24), (1324) 

C3~ 4 (1), (12), (14),(124) 

D3h 6 

C4,, 7 

D3h 20 

Oh 5 

C5~ 24 

(1), (12), (14), (124), (14)(25), (1425) 

(1),(12),(13),(15), (125),(135), (12)(35) 

(1), (12), (14), (34), (123), (124), (142), 
(234), (12)(34), (12)(45), (13)(45), 
(14)(23), (14)(25), (15)(34), (1234), 
(1243), (1254), (1432), (1543) 

(1), (12), (13), (125), (12)(35) 

(1), (12), (13), (16), (123), (126), (135), 
(136), (12)(35), (12)(36), (13)(26), 
(13)(56), (15)(36), (1236), (1263), 
(1325), (1356), (1352), (1365), (1523), 
(1563), (12)(356), (13256), (16523) 

" excerpt from Ref. [39]. 
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octahedral and of trigonal bypyramidal skeletons and named them modes. The 
utility of double cosets for the construction of rearrangement classes became 
rather obvious from the moment when their relevance for the concept of configur- 
ation was analyzed [38]. It was, however, the occurrence of unions of double 
cosets which indicated in a convincing way that classes more general than double 
cosets might establish the algebraic classification concept needed as a satisfactory 
counterpart or reality in nature. It turned out that this very concept, in respect 
of arbitrary groups, is the one covering, as special cases, all the conventional 
types of classes long used in group theory, and that, moreover, further types of 
particular interest are easily derived upon specialization. As for application in 
chemistry, confusion among the various interpretations of the idea of modes 
ought to be ruled out. Therefore, we propose to call bijection classes in application 
to isomerization processes Musher modes. 

With the concept of bijection classes and its structural modalities available 
limitation to isomerization processes on skeletons of identical geometry for both 
the educt and the product is no longer needed. We extend our understanding 
of the concept of a skeleton, therefore, to the notion of a set of sites distributed 
on some carrier of possibly disconnected parts, as for geometry and number, 
possibly different for the educt and for the product. The only assumption 
introduced for the sake of simplified presentation because further simplification 
arises when dropped, is that both the educt and the product have achiral 
symmetries represented by groups H = A �9 o-A and K = B O ~'B, respectively. 
Following the arguments already used, two symmetry aspects have to be taken 
into account, the uncorrelated symmetry, distinguished by proper rotations and 
represented by elements of the group A x B, and the correlation group Q/A x B 
isomorphic with the subgroup {(e, e), (or, r)} of H x K. These associated classes are 

A\~Z-ZC/~(g) = AgB u Ao'grB. (6.3) 

In case the educt, or the product, or both of them, have chiral skeletons, partial 
correlation in the symmetry disappears as QA\,-~:/~ simplifies to Qm/~:, where 
either H, or K, or both H and K, become identical with the subgroups A or B, 
or both A and B, respectively. This means that corresponding classes are 
represented by A\/K,  or H\/B,  or AVB-double cosets. Material in this context 
is extensively discussed in W. G. Klemperer's papers [56] though he tends to 
avoid unions of double cosets. 

Recalling the notion of partially correlated symmetry in its general form, analyzed 
in Chap. 4, one can hardly imagine a situation that accounts for all sorts of 
mobilities allowed in the skeleton of both the educt and the product, where the 
classification of reaction processes could not be described by bijection classes. 
There is, however, an exceptional situation that needs further consideration. 
This situation appears when reference is made to the kinetic rates of rearrange- 
ment processes and the hypothesis of microscopic reversibility is accepted. Then, 
one obtains equal rates for forward and backward reactions between species of 
the same free energy. In mathematical terms, this stipulation means that both 
a permutation and its inverse are regarded as members of the same class [39], 
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[57]. Thus,  in forming so-called kinet ic  modes  one  has to construct  un ions  of 

the type 

O(g) ~ O(g-1). (6.4) 

Since the unif icat ion of bi lateral  classes leads somet imes,  bu t  no t  always, to 
bi lateral  classes, as one  confirms by inspect ion,  it follows that  a rguments  leading 
to kinet ic  modes  are no t  ra t ional ized through the idea of symmet ry  equivalence  
of bi ject ions.  This s ta tement ,  surpris ing or not ,  is not  at all trivial and touches 
u p o n  a fact that  is by no means  obvious  from pure  anschauung.  
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